Steps to debug RPA configuration
Table of Contents

RPA overview	2
Debugging connectivity from RPA to SapphireIMS server	2
Steps to debug	2
RPA connectivity configurations	4
Debugging ticket/asset operations (delegate expression tasks)	4
Steps to debug	4
Tables involved	5
Debugging query tasks used in RPA	5
Steps to debug	5
Configuration tables	6
Debugging webhook tasks	6
Steps to debug	6
Configuration tables	7
Debugging DMN and RPA process	8
DMN overview	8
Steps to debug	8
Configuration table	8
Debugging RPA Process	9
Steps to debug	9
Configuration table	9

[bookmark: _RPA__Overview][bookmark: _Toc52992179]RPA overview

RPA is an automation framework by using which various automation use cases like ticket/asset operations, workflow management, eventual data synchronization, integrating third party APIs / data, etc., can be achieved.

RPA framework is built with following key technologies

· BPMN engine (More about BPMN)
· DMN engine (More about DMN)
· Apache velocity engine (More about velocity engine)
· JSON path (More about JSONPath)
· Cron expressions for timer definition (More about Cron expressions)

RPA is available as an executable plug-in which will install an independent dedicated server and separate schema (rpa). The installation and configuration steps for RPA is already shared as a separate document.

The RPA process has to be configured with series of tasks which are to be executed in sequential flow. The tasks and connectors to define the flow has to be configured as a BPMN notation diagram and any decision-making tasks have to be configured with DMN and gateway to define the segregated flow. The vital configurations like ticket/asset operations are available as delegate expressions (built-in beans).

[bookmark: _Toc52992180]Debugging connectivity from RPA to SapphireIMS server

The RPA connectivity is the key factor to be validated once after installing it. The RPA connectivity failure can be due to any one of the reasons from the following.

[bookmark: _Toc52992181]Steps to debug

1. Failure to complete the proper tenant registration steps.

· The tenant registration will generate the key, token and tenant Id which has to be configured into application.properties file (below 5003 patches) and rpa-authentication.properties file (5003 and above patches).
· The encrypted key and token have to be configured into the properties app.authKey and app.authToken. The separate document is already available for encrypting key and token.
· While registering the tenant, the valid SapphireIMS URL (portal URL) has to be passed as one of input and which is must to make a communication layer from rpa to SapphireIMS.
· The registered key, token, tenant Id & SapphireIMS URL can be retrieved from automation_tenant table once after the registration for verification.
· If the tenant Id is configured wrong, we will get Invalid tenant Id exception in rpa log and if the key/token is wrongly encrypted and configured, we will get 401 unauthorized exceptions.

 Configuring tenant Id, key & token is must to contact the SapphireIMS API. After doing so, we can cross verify it by calling the get ticket/ get asset API from post man. The SapphireIMS APIs have to be integrated to postman and one-time authentication details have to be configured as an environment variable before making a post man request as attached below.

[image:]

Note: Separate detailed documents on RPA installation and configuring key & token and integrating APIs to post man are shared already.

To check the connectivity of API URLs, we can call some sample GET method API URL like get ticket API url in browser (eg: http://localhost/SapphireIMS/api/ticket/get/291 /id?history=false) and response will ask us to pass the key, token as attached below. The validation on key & token response will ensure that the configured API URL is accessible.

[image:]

[bookmark: _Toc52992182]
RPA connectivity configurations

	Configuration type
	Name
	Path (File) / Schema (table)
	Column (table) /Property (Property file)

	Property file
	Application.properties
	SapphireIMS.war\WEB-INF\classes\resource
	app.authKey – registered key.
app.authToken – registered token.
tenant.id – registered tenanted.
rpa.basePath – RPA application path.

	Property file
	Conf_RPA_Application.properties
	Sapphire Installation path\ \Plugins\SapphireIMSRPA\conf
	This property files has various properties to configure RPA port, RPA schema connection details, Attachment path (RPA generated), SSL connectivity parameters (RPA URL), SMTP setting parameters (RPA mail tasks)>

	Table
	Automation_tenant
	Rpa (schema)
	app_auth_key – column where key is stored
app_auth_token - where token is stored
ims_url – Sapphire application portal URL path

[bookmark: _Toc52992183]Debugging ticket/asset operations (delegate expression tasks)

The RPA configurations related to ticket/asset operations (pre-defined delegate expressions) are internally the API calls to Sapphire application server. The RPA configuration for any asset/ticket operation will make a communication layer to corresponding SapphireIMS API in a webhook mode. The RPA server will transfer the required request with parameters based on RPA configuration to Sapphire application server and the desired action will be taken place in Sapphire server and it will send back the response to RPA.
[bookmark: _Toc52992184]Steps to debug

Each request and response from RPA will be logged into RPA log and the table automation_integration_log in rpa schema. The sample RPA log trace on update ticket API request and response is attached below.

[image:]

· The request handling failure in Sapphire application server can be verified by copy pasting the above API request body and API details into post man and calling it manually.
· Any error in response from Sapphire API can be found in server.log.
· The preliminary step is to validate the request body parameters for any invalid parameters and to validate whether the connectivity is proper. Any valid issue found after the validation of API request has to be reported for product bug fixing.

[bookmark: _Toc52992185]Tables involved

	Table Name
	Schema
	Table columns to debug

	automation_integration_log
	Rpa
	URL - ticket / asset API url
request – request data
response - response data
tenant_id – tenant Id which made the request

[bookmark: _Toc52992186]Debugging query tasks used in RPA

The query task to be used in RPA configuration has to be added from RPA add-ons on need. The query task is again another API call to Sapphire server which will execute the query and send the response back as JSON. The details such as the executed query, response time, query result can be traced from RPA log as attached below.

[image:]

The failure in query task can be validated by copy pasting the traced query from the log manually into the query browser and verified. Also, the log will indicate the query result at the time of execution of query which is vital to validate as the results may be different in different time. For Mysql functions used in the rpa query task, mysql general log can be enabled to trace the individual queries involved.
[bookmark: _Toc52992187]Steps to debug

The following things to be verified or debugged on query task issue

1. The single/multi result queries have to be configured as appropriate query result type in RPA configuration (SINGLE/ MULTI, CREATE). Mismatch in configuration would lead to query exception.
2. The appropriate alias name has to be used for select queries as per the column data type in the query used. The alias name to data type column mapping has to be done as follow.

	Query column data type
	Alias name range

	Integer
	attribute1 (to) attribute5

	String
	attribute6 (to) attribute14

	Date
	attribute15 (to) attribute20

[bookmark: _Toc52992188]Configuration tables

	Table Name
	Schema
	Table columns to debug

	Sd_template
	ims
	Name – Configuration name
Template – query added through RPA add-on
Type – should be SQL_QUERY for query task
Project_id – configured project id

	Automation_template
	rpa
	external_ref_Id - configuration name
template – configured query
type – should be SQL_QUERY for query task
tenant_id – requested tenant Id

[bookmark: _Toc52992189]Debugging webhook tasks

The webhook tasks are used to integrate real time data to sapphire server using external (or) outbound API. The webhook takes the connection parameters like API URL, request body, headers, HTTP Method, API authentication details etc., and connect to external API and return the response back to next consecutive tasks.

[bookmark: _Toc52992190]Steps to debug

Following are the recommendation to validate the status of webhook task.

· Each request parameters (API connection parameters mentioned above) & response data for it will be captured in RPA log and the table automation_tenant.
· The postman call has to be made with HTTP method, request API, JSON request body (Rest - POST Method), XML request body (SOAP post method), request headers, authentication type (if set at external API), authentication parameters (for new requirement, it is recommended to get a postman JSON template from customer for external APIs to import directly and validate the response before the implementation).
· The response to the API call will be the response from the external API to the specific request. For any failure in response, the API request details has to be cross verified and then to check with customer to get it validated from their end.

[bookmark: _Toc52992191] Configuration tables

	Table Name
	Schema
	Table columns to debug

	Sd_template
	ims
	Name – Configuration name
Template – request body added through RPA add-on
Type – should be WEBHOKS_BODY for webhook task
Project_id – configured project id

	Sd_integration_config
	ims
	URL – API url
http_method – GET/POST method
header – Headers to be sent
project_id – Configuration project Id
auth_handler – Custom class file path to handle if any specialized authentication (rpa jar file custom class path)
response_handler - Custom class file path to handle if any specialized response handler to handle response in required format
request_handler - Custom class file path to handle if any specialized pre request handler to manipulate requests before sending
auth_key – key to connect to Inbound or outbound (if required)
auth_value - token to connect to Inbound or outbound (if required)
error_handler – Custom class file path to handle if any error (or) send appropriate error messages

	Automation_template
	rpa
	external_ref_Id - configuration name
template – request body added through RPA add-on
type – should be WEBHOKS_BODY for webhook task
tenant_id – requested tenant Id

	automation_integration_config
	rpa
	URL – API url
http_method – GET/POST method
header – Headers to be sent
Web_hook_type – API type / API name
auth_handler – Custom class file path to handle if any specialized authentication (rpa jar file custom class path)
response_handler - Custom class file path to handle if any specialized response handler to handle response in required format
request_handler - Custom class file path to handle if any specialized pre request handler to manipulate requests before sending
auth_key – key to connect to Inbound or outbound (if required)
auth_value - token to connect to Inbound or outbound (if required)
error_handler – Custom class file path to handle if any error (or) send appropriate error messages

[bookmark: _Toc52992192]Debugging DMN and RPA process
[bookmark: _Toc52992193]DMN overview

The DMN can be used when some decision has to be carried out with input parameters to define the flow of tasks. It is generally used to define outputs for various possible inputs. For example, service 1 -> Approval logic 1 to be applied and Service 2 -> Approval logic 2 has to be applied. Each row in DMN is to define each input and its output mapping.

[bookmark: _Toc52992194]Steps to debug

Following are the things to be validated for DMN :

· The desired output for the current input being passed to DMN should be validated on row basis tracking.
· The data type of each input and output has to be configured strictly. The expected single/multi result has to be configured strict in RPA process and failure in it will lead to process failure.
· Each DMN table columns has a refresh icon option which is applicable to specific column mapped parameter. If service is mapped to a specific DMN column, after adding a new service from configuration, we have to do the Project refresh cache and DMN column refresh cache to reflect in the column data picker.
· The DMN output will usually be passed to gateway task which would accept a Boolean expression (true/false expression) and define segregates gateways or flows.

[bookmark: _Toc52992195] Configuration table

	Table Name
	Schema
	Table columns to debug

	Rpa_process
	ims
	processed – RPA process Id
project_id – Project Id of the configuration
type – Should be DMN
process – XML content of the DMN process
active – To enable/disable RPA process

[bookmark: _Toc52992196]Debugging RPA Process

RPA involves series of service tasks, connectors, expression based gateways, DMN, sub process (loop), start & end event. In a typical case, there can be time based start events (or) intermediate timer events, user tasks, email tasks, etc,.
[bookmark: _Toc52992197]Steps to debug

Following are the steps to be verified to debug RPA process:

· The preliminary check is to validate as if RPA server is running.
· RPA log has to be checked to trace the cause and task which is failed. The failed task Id will be available in RPA log which can just be copy pasted into RPA process configuration screen (ctrl + f) to get the exact failed task.
· The response body which shows below execption should be verified in Sapphire application’s server log for exact cause.
Response body: {"status":"Runtime Exception","code":1000,"message":"Please Contact Sapphire Support","developerMessage" :null,"moreInfoUrl":null,"throwable":null}
· The sequential flow of the RPA has to be traced in each task level to trace any logical issue in RPA configuration. Each task (API tasks) will be recorded with request and response parameters which have to be validated sequentially.
· The inappropriate use of result names, result type (query & DMN task), conditional checks, finite loops, expressions (or) timer delay can cause logical, performance and syntax error to the process. These things have to be taken care each time we configure/debug the RPA process.
· The failure in a specific task can lead to process failure unless error handling is implemented in RPA process.
· The project refresh cache is must for any new project configuration changes in service desk and asset refresh cache is must for any asset configuration change.
· The possible null handling and empty checks has to be done in RPA using velocity template if condition check or query level to avoid any data loss / wrong data storage.
· The timer start events in RPA will launch independent of project with configured time interval and so disabling these RPA processes from UI project level will not disable this unless we revert the timer start event to normal start events.
· The inappropriate use of time delay or loop may cause slowness and performance impact. The delay has to be set only when it is required.

[bookmark: _Toc52992198] Configuration table

	Table Name
	Schema
	Table columns to debug

	Rpa_process
	ims
	processed – RPA process Id
project_id – Project Id of the configuration
type – Should be BPMN
process – XML content of the BPMN process
active – To enable/disable RPA process

image1.png
88 My Workspace

— SapphirelMs DEMO -
GThe GTr.@ Gg® Grg® PosTL | POSTGe G GX

b Get Ticket Details g S2PPhireIMS DEMO Edit

GET -

Params® Aut pphirelMS

cach_req

Query Params

Globals Edit

image2.png
< C @ localhost/SapphirelMs/api/ticket/get/291/id?history=false * @

Key is manditory Please send Header key

image3.png
2020-08-27

equest begir
2020-08-27 URT :https://localhost/SapphireINS/api/ticket/update
2020-08-27 Method : POST
2020-68-27 11:06:27.116 Headers: {Accept=[application/json], Content-Type=[application/json], key=[60cbe7S-969d-4016-5fe3-eabedceSaeds],
a ef1-58eb2081321e], User-Agent=[Java-SDK], Content-Length-[10192]}

Request body :
"requestType” : "Create Ticket",
"requestTime” : "2020-88-27T05:36:27.186+0000",
"integrationlogld” : "152aecef-b94d-4144-aefl-58eb2081321e",
"iteration” : 1,
"ticket” : {

"currentState” : {

d” 18,

"updated” : false,
"stateld” : 18,
"stateName” : "New",

b

3
2020-08-27 11:06:27.151
2020-08-27 11:06:27.151 Status code : 200
2020-08-27 11:06:27.151 Status text oK

2020-08-27 11:06:27.151 Headers _: i i nust_revalidate
Response body: { requestlype":"Create Ticket', requestlime":1508506587106, integrationLogld" : 150aecet-bo4d-4144-aefl-58eb2081321e",

,"problenTd":119252, "requesthunber™: "INC-99737"}

2020-08-27 11:06:27.151

image4.png
Request begin

URT : https://sd.pvrcinenas. con/SapphireINS/api/query/multiresult?tenantDB=ins
ethod : POST

"application/json”

Status code
Status text
Headers

Response body: {"integrationlogId”:"Barrier86014c02-f9f7-4ddc-aad6-0b51F39c676¢", "iteration” 0, "query™:{ updated”: false,

“tenanatld": "e14f37fd-5aaa-4c87-af63-3ee80db675b8" , "templateld”: "security 3rd shift Closing”,”queryTime":1608201821222,

rom sd_servicereqmaster where projectid=2 and currentstatus not in (31,33,34,105)
‘queryStartTime":1600201821079, "queryEndtime”: 1600201821081, "timeTaken" : 1, "sucessCretaeUpdateQuery”: false}

"query”:"select problemid a
and subcategory in (576);

[resirerin

Response end:

